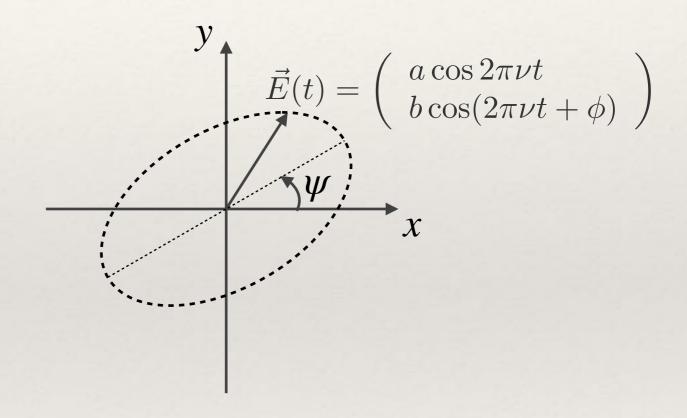
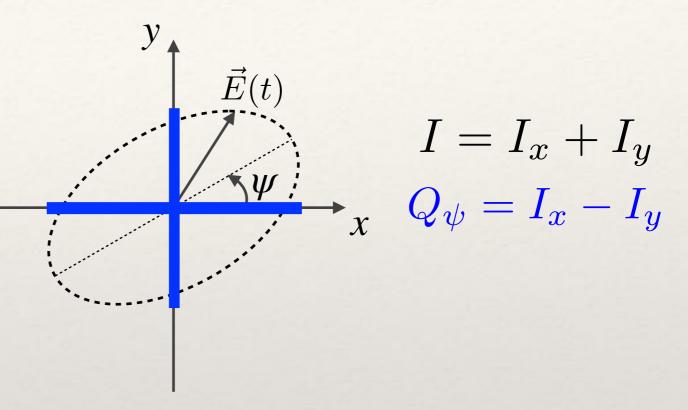
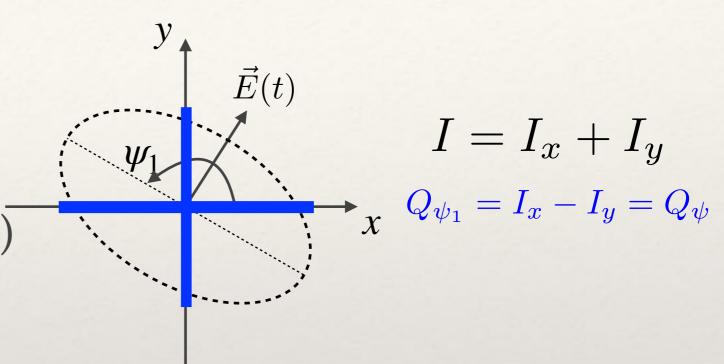
A few minutes on measuring polarisation

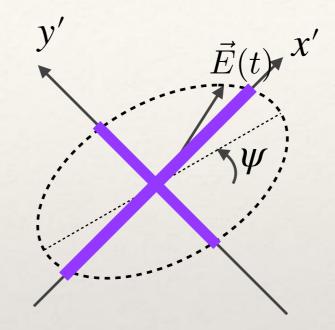

Nicolas Ponthieu, IPAG-CNRS

Intention

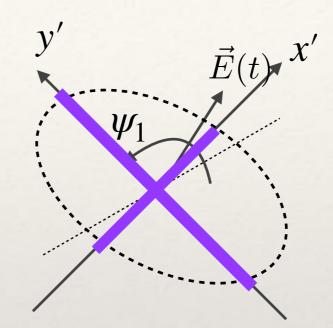

- * Models of star or galactic emissions refer to degree and angle of polarisation, CMB cosmology refers to "E and B modes"... but these are not directly measurable by incoherent detectors
- * The science cases are addressed in other talks of this workshop, so here I'll focus on
 - * What we actually measure
 - * *How* it affects the design of a polarimeter and observations
- * Not a review but rather an attempt to be pedagogical and illustrate principles on a particular case
- Experts may skip this talk ;-)

N. Ponthieu


- Light travels towards us along the z axis
- Polarimetry aims at characterising the trajectory of the E field in the (x,y) plane
- * Two particular (canonical) states are *circular* and *linear* polarisations
- * Instruments can either detect the electric field *or the intensity I=E*²


- I = "total intensity" is basis independent
- * Two extra parameters (Q,U) are needed to describe the projection of the ellipse
- * A last parameter (V)
 measures the rotation of E,
 but will be ignored
 hereafter.

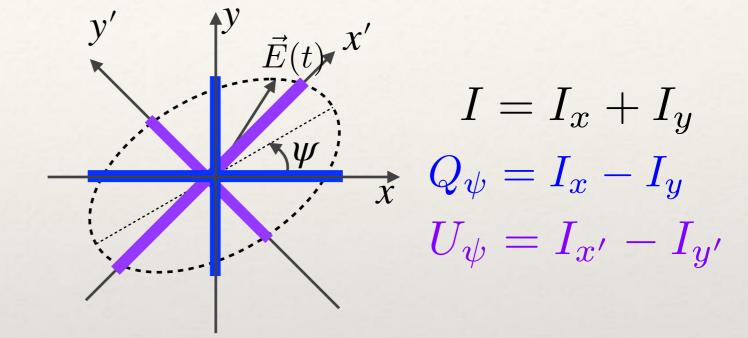
- * I = "total intensity" is basis independent
- Two extra parameters (Q,U)
 are needed to describe the
 projection of the ellipse
- * A last parameter (V)
 measures the rotation of E,
 but will be ignored
 hereafter.



- I = "total intensity" is basis independent
- * Two extra parameters (Q,U) are needed to describe the projection of the ellipse
- * A last parameter (V)
 measures the rotation of E,
 but will be ignored
 hereafter.

$$I = I_x + I_y$$
 $Q_{\psi} = I_x - I_y$
 $U_{\psi} = I_{x'} - I_{y'}$

- I = "total intensity" is basis independent
- * Two extra parameters (Q,U) are needed to describe the projection of the ellipse
- * A last parameter (V)
 measures the rotation of E,
 but will be ignored
 hereafter.



$$I = I_x + I_y$$

$$Q_{\psi_1} = I_x - I_y = Q_{\psi}$$

$$U_{\psi_1} = I_{x'} - I_{y'} \neq U_{\psi}$$

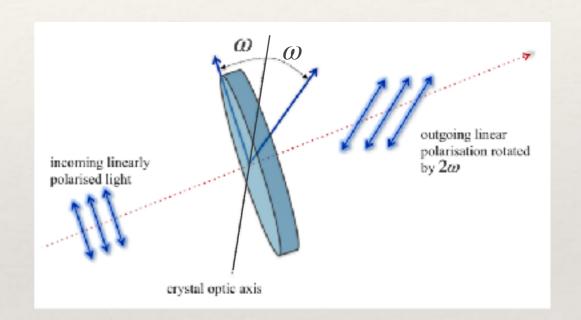
- * I, Q, U, V are the Stokes parameters (G. G. Stokes, 1819-1903)
- Operations on these parameters are described by Mueller matrices (H. Mueller, 1900-1965)
- They relate to the degree and angle of polarisation:

$$p = \frac{\sqrt{Q^2 + U^2 + V^2}}{I} \qquad \psi = \frac{1}{2}\arctan(U, Q) \qquad Q = pI\cos 2\psi \qquad U = pI\sin 2\psi$$

$$Q = pI\cos 2\psi \quad U = pI\sin 2\psi$$

An incoherent detector sensitive to polarisation measures, with its direction oriented at alpha w.r.t. x measures:

$$m = \frac{1}{2}(I + Q\cos 2\alpha + U\sin 2\alpha)$$


$$m = \frac{1}{2}(I + Q\cos 2\alpha + U\sin 2\alpha)$$

- * For each map pixel, we need at least 3 different angles in [0,180[to derive I, Q and U. Minimum covariance is attained when these angles are evenly distributed.
 - * 1/Different orientations of the polarised detectors and combine them (e.g. Archeops, Planck, BICEP/Keck, QUaD, SPT3G...)
 - * Or 2/Enough angle variation per detector to make a map of I, Q, U per detector, and then combine them.
- * To vary the orientation of a detector:
 - * 1/Let the sky rotate w.r.t. the instrument: simple instrumental design, but slow compared to sky noise and electronic noise
 - * Or 2/Actively rotate the sky polarisation: Maxipol, SCUpol, CLASS, ACT, Simons O., PILOT, NIKA2, LiteBIRD

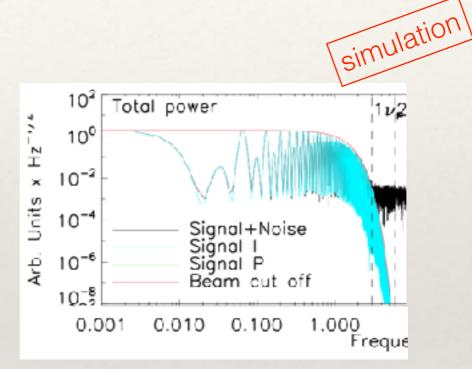
Half Wave Plate polarimetry

HWP + polariser —>
$$m = \frac{1}{2}(I + Q\cos 4\omega + U\sin 4\omega)$$

- * On the bright side
 - The same detector can measure I, Q and U
 - Releases constraints on the focal plane design
 - Releases constraints on the scanning strategy
 - Offers huge angular redundancy and homogeneity, so optimal covariance
 - Enables null tests
 - Rejects the sky noise
 - Rejects the electronic noise

Example: NIKA2 @IRAM's 30m

	Array 1&3	Array 2
Reference Wavelength [mm] Reference Frequency [GHz]	1.15 260	2.00 150
Number of valid detectors ^a	952&961	553
FWHM ^c [arcsec]	11.1 ± 0.2	17.6 ± 0.1
$\begin{array}{cc} \text{NEFD}^{i} & [\text{mJy} \cdot \text{s}^{1/2}] \\ \mathbf{M_{s}}^{j} & [\text{arcmin}^{2} \cdot \text{mJy}^{-2} \cdot \mathbf{h}^{-1}] \end{array}$	30 ± 3 111 ± 11	9 ± 1 1388 ± 174


Perotto+20

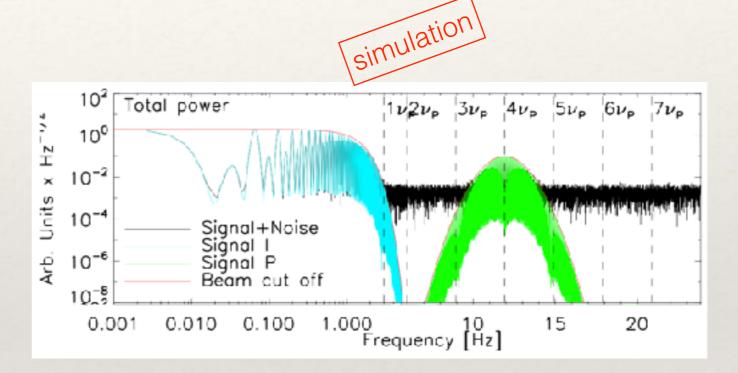
- Kinetic Inductance Detectors
- * 6.5 arcmin FOV
- Linear polarisation at 1.2mm
- HWP continuously rotating at 3Hz

$$m = \frac{1}{2}(I + Q\cos 4\omega + U\sin 4\omega)$$

* Total intensity is at low frequencies, damped by the beam

Ritacco+17

**


**

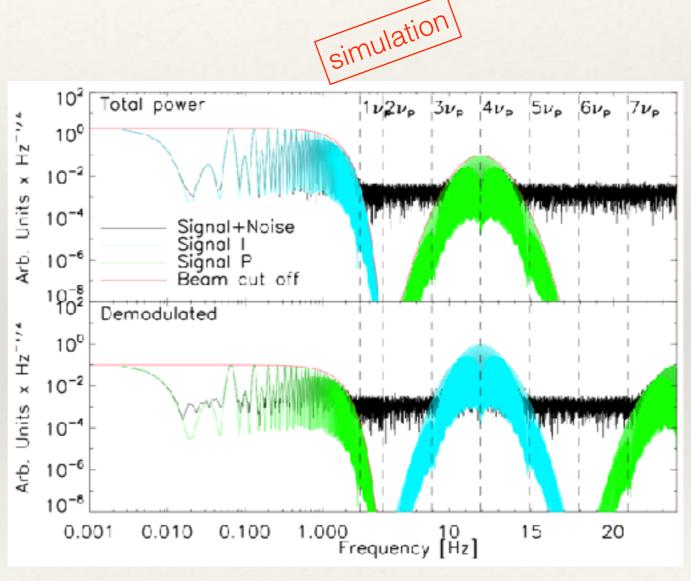
**

**

$$m = \frac{1}{2}(I + Q\cos 4\omega + U\sin 4\omega)$$

- Total intensity is at low frequencies, damped by the beam
- * Q and U are pushed to frequencies around 4 times the HWP rot. freq.

Ritacco+17

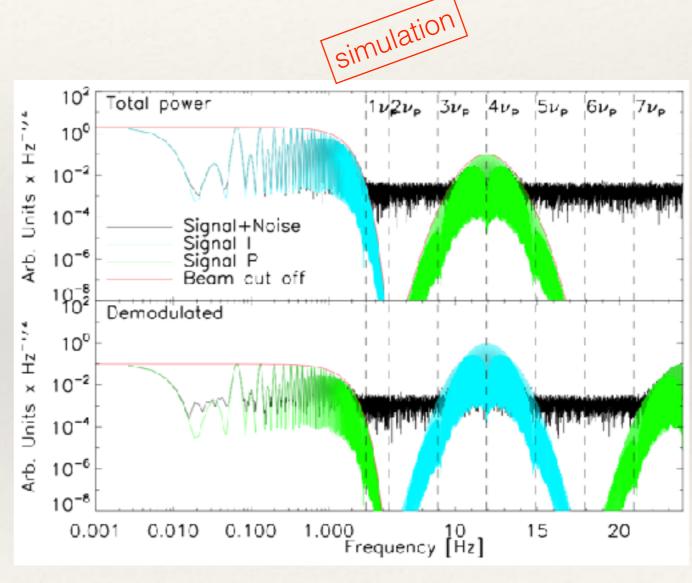

**

**

**

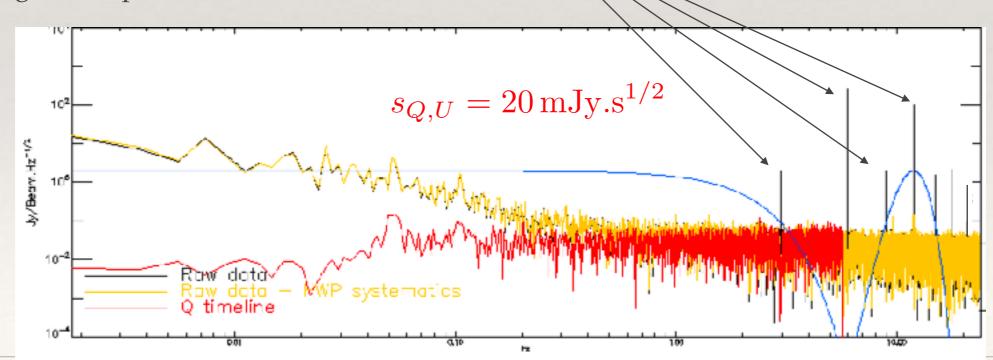
$$m = \frac{1}{2}(I + Q\cos 4\omega + U\sin 4\omega)$$

- Total intensity is at low frequencies, damped by the beam
- Q and U are pushed to frequencies around4 times the HWP rot. freq.
- Locking-in + low-pass filtering allow to separate and recover I, Q, U per detector timeline.

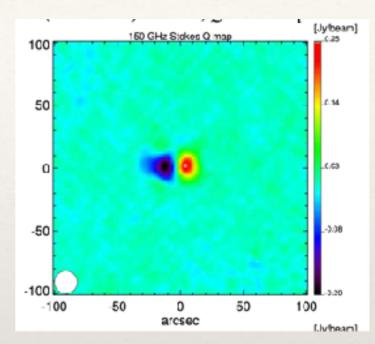

Ritacco+17

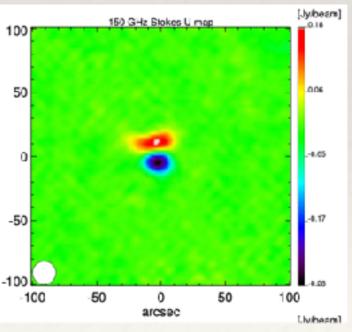
**

**


$$m = \frac{1}{2}(I + Q\cos 4\omega + U\sin 4\omega)$$

- Total intensity is at low frequencies, damped by the beam
- * Q and U are pushed to frequencies around 4 times the HWP rot. freq.
- * Locking-in + low-pass filtering allow to separate and recover I, Q, U per detector timeline.
- * Rotating the HWP above 1Hz puts polarisation at frequencies where sky noise is negligible and instrumental noise is white
- * Note: constraints on the observation scanning speed vs HWP rotation frequency to prevent I and P bandpasses overlap


Ritacco+17


- * On the dark side
 - * Extra piece of hardware
 - * Extra constraints on the electronics, the acquisition rate and thus the volume of data to reduce.
 - Need fast detectors
 - * Strong additional systematic signal due to background modulation and reflections at the HWP level
- But the bright side prevails!

Systematic effects

- * I to P: instrumental polarisation.
 - * Hard to design and build telescope/instruments with less than a few % IP. Comparable to many science cases. Hard to characterise
 - * IP can vary with the telescope's focus, elevation, temperature...
- * Rotation Q-U mixing:
 - Absolute orientation of instrument on the sky?
 - * For local observables, it's "just" a parameter, but for non local observables (e.g. CMB E-B modes), it is more problematic.
- * Polarisation efficiency m = 0.5*(I+r*(Qcos2a + Usin2a))
- * Need for *calibrators* ==> PROTOCALC and COSMOCAL (A. Ritacco's talk)

Ritacco+17

Measuring polarisation in short

- * 3 parameters I, Q, U instead of only one
- * Continuously rotating a HWP at about 1 Hz
 - * Allows high angular redundancy, homogeneity and null tests. Not to mention beam related IP systematics.
 - * Requires fast detectors
 - * Produces a systematic modulation of the background, that, although huge, can be controlled.
- * Usually, I is 10 to 100 times (at least...) larger than Q and U, so instrumental polarisation I to P in general is the most critical and may vary in time in a way that is non trivial and difficult to assess. It relates to beams.
- * Strong need for calibrators in the far field, unpolarised (for the beam and IP), polarised for the orientation and efficiency

Being sensitive to polarisation doesn't make a polarimeter