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Phase separation in Hi data

• Hi observations of Galactic WNM/CNM

▶ Warm (WNM) and Cold (CNM) Neutral Media
▶ Two phases with different spectral/spatial properties
▶ Current separation mostly rely on spectral properties

→ How to model and separate WNM and CNM?
→ By relying on their different spatial morphologies?

→ If possible directly from the data?
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Beyond Power Spectrum statistics

• A generic tool: the Power Spectrum

▶ Square amplitude of Fourier modes
▶ Energy/Power in each Fourier mode
▶ Most usual statistical tool in astrophysics

→ Does not characterize interaction between scales
→ Need beyond Power Spectrum statistics for NL fields
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Non-Gaussian modeling and component separation

• Non-Gaussianity is not our enemy!

▶ Important lever arm for components separation
▶ Even from a small amount of data

→ Challenge of using non-Gaussian information
→ Should be possible to work with (very) small dataset
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Scattering transform (ST) statistics

• Scattering transform statistics (Mallat+, 2010+)

▶ Initially developed in data science
▶ Inspired from neural networks

→ efficient characterization and reduced variance
▶ Do not need any training stage

→ explicit mathematical form and interpretability

→ Wavelet filters separating the different scales
→ Coupling between scales with non-linearities
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Scattering Transform (ST) statistics

• Wavelet Phase Harmonics and phase alignment (EA+20)

→ 1 coeff / pair of scales / type of interaction
→ Can be extended to cross-statistics between maps
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Scattering Transform (ST) statistics

• A family of statistics

▶ Different generations of statistics
→ Wavelet Scattering Transforms (WST) (EA+19)

→ Wavelet Phase Harmonics (WPH) (EA+20)

→ Scattering covariances/spectra (Cheng+23)

▶ All share the same framework

• Characterization and parameter inference

▶ Interstellar medium (EA+19, Regaldo+20, Saydjari+20, Lei+22)

▶ Weak lensing (Cheng+20, 21)

▶ Large scale structures (EA+20, Eickenberg+22, Valogiannis+22a, 22b)

▶ 21cm epoch of reionization (Greig+22, Hothi+23)

▶ ...

→ Very informative (sometimes on par with CNN!)
→ Wide range of applicability (generic, training-less)
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Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

▶ From the ST statistics Φ(s) of data s
▶ Maximum entropy model under ST constraints
▶ Quantitative non-Gaussian modeling of physical processes

p(s) −→ s0 −→ ϕ(s0) −→ pm.e.
ϕ(s0)

(s̃) −→ s̃

• Practical implementation (microcanonical)
▶ Constraints Φ(s) from a (set of) data s
▶ Sampled with a gradient-descent algorithm

→ from a white noise realization
→ Pixel-space optim. of s̃ such that Φ(s̃) ≃ Φ(s)
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Generative models from Scattering transforms

• Generative model from a single image (Cheng+24)

▶ Scattering spectra + physical dimensionality reduction

→ Realistic NG models from a few hundreds coefficients!
→ Usual (NG) statistics very well reproduced (up to 1-10 %)
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Generative models from Scattering transforms

• ST generative models for radio data (Hothi+, in prep)

▶ Epoch of Reionization spectroscopic data-cube
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Generative models from Scattering transforms

• ST generative models for radio data (Hothi+, in prep)

▶ Statistical validation for pdf (lin/log) and xz-Minkowski functional

→ Very good modeling from one single data-cube
→ Extend ST applications to spectroscopic radio data
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Separating CIB and Galactic dust emission

• Galactic dust emission and Cosmic Infrared Background (CIB)
▶ Thermal dust emission in the interstellar medium
▶ Same emission from Milky Way and other galaxies
▶ Cosmic background dominates a smaller scales

→ Characterization of Galactic dust on those scales?
→ Challenge of low-data regime + lack of prior model
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From generative model to comp. sep.

• Generative model from available sample

▶ Estimate ϕ(s) from sample s
▶ Generate maps s̃ such that

Φ(s̃) ≃ Φ(s)

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination
▶ d = s+ c, assume we have {ci}i
▶ Generate a map s̃ such that

⟨Φ(s̃+ ci)⟩i ≃ Φ(d)

▶ Gradient descent from d (for instance)

→ Framework for component separation
→ Can include various other statistical constraints
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Separation solely from observational data

Dust emission/Cosmic Infrared Background (Auclair+, 24)

▶ d = s+ c, s thermal dust emission, c CIB
▶ CIB model from separate observation (cosmological ⇒ homogeneous)
▶ Two constraints, with {ci}i from ST model〈

Φ(s̃+ ci)
〉
i
≃ Φ(d), Φ(c̃) = Φ(c)
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Recovered components (Auclair+24)

→ Statistical component separation solely from obs. data
→ Thermal dust is recovered at an unprecedented resolution

→ Soon in a Bayesian framework! (Pierre+, in prep.)
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Unsupervised separation of Hi data

• Modeling Galactic WNM/CNM from Hi data

▶ GALFA-Hi in 3 km/s bins (treated as 2D maps)
▶ High-latitude + |v| < 40 km/s, 4’ angular resolution
▶ ∼ 36k 2562 patches with CNM, WNM, noise

→ Learn WNM and CNM ST models from these patches?
→ First step with only spatial morphology
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Unsupervised separation of Hi data

• Variational Auto-Encoder (VAE) in ST space (Siahkoohi+, 23a,b)

▶ Learn the identity in ST space over the dataset
▶ Gaussian mixture model in latent space

→ one Gaussian per component (hyperparameter)

→ Unsupervised learning of components in ST space
→ ST model for each component after training
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Unsupervised separation of Hi data

• Application to GALFA-Hi data (Lei, Clark+, in prep.)

▶ Unsupervised identification of 3 components

→ WNM/CNM/noise seem well modeled! (in progress)
→ Interfacing ST models with other ML algorithms
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Application to CNM mapping

• Component separation from learned models (Lei, Clark+, in prep.)

▶ ST-based component separation (other could be used)
▶ 19°x51° footprint, LOS-integrated CNM column density

→ Phase separation directly from the data (preliminary!)
→ From spatial structure only, spectral information next
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Conclusion

• Scattering Transforms

→ Efficient non-Gaussian statistics inspired from neural network

→ Characterize interaction between scales in non-linear processes

• New tools for (astro-)physics

→ Modeling and component separations

→ Ability to work with a very limited amount of data

→ Ability to work without prior data model

• Applications to come are very exciting!

→ Complete ST modeling of spectroscopic datacubes

→ Multiple applications to radio data

→ Versatile and powerful tools: happy to discuss :-)

Thanks for your attention!
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