Scattering Transforms for radio data: using spatial morphology for modeling and component separation

Erwan Allys - ENS, Paris (Physics laboratory and Center for data science)

Journées AtLAST France, Paris, May 13^{th} 2025

Phase separation in HI data

• HI observations of Galactic WNM/CNM

- ▶ Warm (WNM) and Cold (CNM) Neutral Media
- ▶ Two phases with different spectral/spatial properties
- Current separation mostly rely on spectral properties

 \rightarrow How to model and separate WNM and CNM? \rightarrow By relying on their different spatial morphologies? \rightarrow If possible directly from the data?

Beyond Power Spectrum statistics

- A generic tool: the Power Spectrum
 - Square amplitude of Fourier modes
 - ▶ Energy/Power in each Fourier mode
 - Most usual statistical tool in astrophysics

Fields of same power spectrum

 \rightarrow Does not characterize interaction between scales \rightarrow Need beyond Power Spectrum statistics for NL fields

Non-Gaussian modeling and component separation

• Non-Gaussianity is not our enemy!

Important lever arm for components separationEven from a small amount of data

 \rightarrow Challenge of using non-Gaussian information \rightarrow Should be possible to work with (very) small dataset

Outline

1 Scattering Transforms and generative models

2 Component separation and modeling from the data

Scattering transform (ST) statistics

• Scattering transform statistics (Mallat+, 2010+)

- ▶ Initially developed in data science
- Inspired from neural networks
 - \rightarrow efficient characterization and reduced variance
- Do not need any training stage
 - \rightarrow explicit mathematical form and interpretability

 \rightarrow Wavelet filters separating the different scales \rightarrow Coupling between scales with non-linearities

Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• Wavelet Phase Harmonics and phase alignment (EA+20)

 \rightarrow 1 coeff / pair of scales / type of interaction \rightarrow Can be extended to cross-statistics between maps

Scattering Transform statistics Generative models from Scattering transforms

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

- (EA + 20)
- (Cheng+23)

⁽EA + 19)

(EA + 19)

(EA + 20)

(Cheng+23)

Scattering Transform (ST) statistics

• A family of statistics

- Different generations of statistics
 - \rightarrow Wavelet Scattering Transforms (WST)
 - \rightarrow Wavelet Phase Harmonics (WPH)
 - \rightarrow Scattering covariances/spectra
- ▶ All share the same framework

• Characterization and parameter inference

Interstellar medium	(EA+19, Regaldo+20,	Saydjari+20, Lei+22)
Weak lensing		(Cheng+20, 21)
Large scale structures	(EA+20, Eickenberg+22,	Valogiannis+22a, 22b)
21cm epoch of reionization		(Greig+22, Hothi+23)

 \rightarrow Very informative (sometimes on par with CNN!) \rightarrow Wide range of applicability (generic, training-less)

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- From the ST statistics $\Phi(s)$ of data s
- ▶ Maximum entropy model under ST constraints
- ▶ Quantitative non-Gaussian modeling of *physical processes*

$$p(s) \longrightarrow s_0 \longrightarrow \phi(s_0) \longrightarrow p_{\phi(s_0)}^{\mathrm{m.e.}}(\tilde{s}) \longrightarrow \tilde{s}$$

Generative models from Scattering transforms

• Generative model from ST statistics (Bruna, Mallat, 19)

- From the ST statistics $\Phi(s)$ of data s
- ▶ Maximum entropy model under ST constraints
- ▶ Quantitative non-Gaussian modeling of *physical processes*

$$p(s) \longrightarrow s_0 \longrightarrow \phi(s_0) \longrightarrow p_{\phi(s_0)}^{\mathrm{m.e.}}(\tilde{s}) \longrightarrow \tilde{s}$$

• Practical implementation (microcanonical)

- Constraints $\Phi(s)$ from a (set of) data s
- Sampled with a gradient-descent algorithm
 - \rightarrow from a white noise realization
 - \rightarrow Pixel-space optim. of \tilde{s} such that $\Phi(\tilde{s}) \simeq \Phi(s)$

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- Generative model from a single image (Cheng+24)
 - Scattering spectra + physical dimensionality reduction

 \rightarrow Realistic NG models from a few hundreds coefficients! \rightarrow Usual (NG) statistics very well reproduced (up to 1-10 %)

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- ST generative models for radio data (Hothi+, in prep)
 - ▶ Epoch of Reionization spectroscopic data-cube

Scattering Transform statistics Generative models from Scattering transforms

Generative models from Scattering transforms

- ST generative models for radio data (Hothi+, in prep)
 - ▶ Statistical validation for pdf (lin/log) and xz-Minkowski functional

 \rightarrow Very good modeling from one single data-cube \rightarrow Extend ST applications to spectroscopic radio data

Outline

1 Scattering Transforms and generative models

2 Component separation and modeling from the data

Statistical component separation Unsupervised separation of HI data

Separating CIB and Galactic dust emission

• Galactic dust emission and Cosmic Infrared Background (CIB)

- ▶ Thermal dust emission in the interstellar medium
- ▶ Same emission from Milky Way and other galaxies
- Cosmic background dominates a smaller scales

 \rightarrow Characterization of Galactic dust on those scales? \rightarrow Challenge of low-data regime + lack of prior model

Statistical component separation Unsupervised separation of Hi data

From generative model to comp. sep.

- Generative model from available sample
 - Estimate $\phi(s)$ from sample s
 - Generate maps \tilde{s} such that

 $\Phi(\tilde{s}) \simeq \Phi(s)$

▶ Sampled with gradient descent from white noise

Statistical component separation Unsupervised separation of Hi data

From generative model to comp. sep.

- Generative model from available sample
 - Estimate $\phi(s)$ from sample s
 - Generate maps \tilde{s} such that

$$\Phi(\tilde{s}) \simeq \Phi(s)$$

▶ Sampled with gradient descent from white noise

• Indirect observation with know contamination

- d = s + c, assume we have $\{c_i\}_i$
- Generate a map \tilde{s} such that

$$\left\langle \Phi(\tilde{s} + c_i) \right\rangle_i \simeq \Phi(d)$$

• Gradient descent from d (for instance)

 \rightarrow Framework for component separation \rightarrow Can include various other statistical constraints

Statistical component separation Unsupervised separation of HI data

Separation solely from observational data

• Dust emission/Cosmic Infrared Background (Auclair+, 24)

- d = s + c, s thermal dust emission, c CIB
- ▶ CIB model from separate observation (cosmological \Rightarrow homogeneous)
- Two constraints, with $\{c_i\}_i$ from ST model

$$\left\langle \Phi(\tilde{s}+c_i) \right\rangle_i \simeq \Phi(d), \qquad \Phi(\tilde{c}) = \Phi(c)$$

Statistical component separation Unsupervised separation of Hi data

• Recovered components (Auclair+24)

→ Statistical component separation solely from obs. data → Thermal dust is recovered at an unprecedented resolution → Soon in a Bayesian framework! (Pierre+, in prep.)

Statistical component separation Unsupervised separation of H_1 data

Unsupervised separation of HI data

• Modeling Galactic WNM/CNM from HI data

- ► GALFA-HI in 3 km/s bins (treated as 2D maps)
- ▶ High-latitude + |v| < 40 km/s, 4' angular resolution
- ▶ ~ $36k \ 256^2$ patches with CNM, WNM, noise

\rightarrow Learn WNM and CNM ST models from these patches? \rightarrow First step with only spatial morphology

Statistical component separation Unsupervised separation of H_1 data

Unsupervised separation of HI data

- Variational Auto-Encoder (VAE) in ST space (Siahkoohi+, 23a,b)
 - ▶ Learn the identity in ST space over the dataset
 - ▶ Gaussian mixture model in latent space
 - \rightarrow one Gaussian per component (hyperparameter)

 \rightarrow Unsupervised learning of components in ST space \rightarrow ST model for each component after training

Statistical component separation Unsupervised separation of HI data

Unsupervised separation of HI data

- Application to GALFA-HI data (Lei, Clark+, in prep.)
 - Unsupervised identification of 3 components

 $\rightarrow \mathbf{WNM/CNM/noise \ seem \ well \ modeled! \ (in \ progress) }$ $\rightarrow \mathbf{Interfacing \ ST \ models \ with \ other \ ML \ algorithms }$

Statistical component separation Unsupervised separation of H_1 data

Application to CNM mapping

• Component separation from learned models (Lei, Clark+, in prep.)

- ▶ ST-based component separation (other could be used)
- ▶ 19°x51° footprint, LOS-integrated CNM column density

 \rightarrow Phase separation directly from the data (preliminary!) \rightarrow From spatial structure only, spectral information next

Conclusion

• Scattering Transforms

- \rightarrow Efficient non-Gaussian statistics inspired from neural network
- \rightarrow Characterize interaction between scales in non-linear processes

• New tools for (astro-)physics

- \rightarrow Modeling and component separations
- \rightarrow Ability to work with a very limited amount of data
- \rightarrow Ability to work without prior data model

• Applications to come are very exciting!

- \rightarrow Complete ST modeling of spectroscopic datacubes
- \rightarrow Multiple applications to radio data
- \rightarrow Versatile and powerful tools: happy to discuss :-)

Thanks for your attention!