(Sub-)mm data reduction and analysis Direct detection

Alexandre Beelen – LAM AtLAST-fr-days - May 13th 2025

AtLAST wide-field Motivation

- "To perform the deepest, widest (100 1000 deg²), and most complete imaging (...) surveys" (Reichert+24)
- "A worked example for a 1000 deg2 continuum survey in 1000 hours was presented" (van Kampen+24)
- "[...] a Galactic Plane survey would need to cover up to 540 deg²." (Klaassen+24)

(Sub)-mm Direct Detection Challenges

- Atmospheric Emission
- Instrumental/Electronic Drifts
- Telescope Observing Patterns
- Optical Aberrations
- Data Rate & Volume

Atmospheric Emission

- Main contributor :
 - Water vapor is the dominant absorber/emitter in submm/mm windows
- Characteristics:
 - Highly variable on timescales of s to min.
 - Sky brightness ∝ precipitable water vapor (PWV);
 often > 10 to 1000 times brighter than sources.
- Mitigation:
 - Observing from the highest, dryest sites
 - Observing pattern with sky redundancy !
 - Skydips, WVR-based corrections, atm. Models (Pardo+01, Paine+19).

Impact:

- Strong influence on raw noise power spectra and **correlated signal across detectors**.
- Impact on calibration accuracy.

Atmospheric Emission Mitigation

- Strongly correlated
 - MedianNoise / Most Correlated Pixels
 - [–] PCA/ICA
 - Template/model fitting
 - [–] Scanamorphos
 - ML: UNIMAP/SANEPIC/TOAST/Minkasi
 - Inverse Problem (SUPREME/TAMASIS/...)
 ...

Filters the sky

- MC simulations → Transfert function
- All scales !
- Trade-off
 - Point Source vs Extended Emission
 - Iterative Processing could be needed...

Atmospheric Mitigation in the AtLAST Era

- Large FoV and small PSF : 2° vs 1.5"
 - Is the atmostphere uniform at those scale?
 - Anomalous refraction
- Multi-λ camera
 - Can we properly use the multi- λ information ?
- LOS PWV radiometer
 - Several water lines?
 - Several positions on the FoV?

Instrumental/Electronic Drifts

• Noise Sources:

- Electronics thermal fluctuations,
- Readout instabilities,
- Magnetic field pick-up, Varying optical load...

• Manifestation:

1/f pink noise, slow drifts, scan-synchronous patterns.

Corrections:

- Iterative Common-Mode subtraction
- Electronic boxes decorrelation
- High-pass filtering / Template fitting
- (Deeper) PCA/ICA
- Even More Sky Filtering

Single Dish Observing Modes

- Optimizing for Sensitivity and Sky Coverage
 - Raster scans, Spirals, Lissajous, onthe-fly (OTF) mapping
 - Maximize cross-scan directions
 - Constraints from atmospheric decorrelation time
 - Telescope accelerations
- Sky filtering

Single Dish Optical Aberrations

- Optical Quality and Accurate Pointing
 - Beam properties and calibration
 - Beam fidelity critical for photometry and spatial analysis

• Aberration Types

- Coma, Astigmatism, Field curvature, Spherical aberration
- Elevation dependant gain
- Mitigation Strategies:
 - Best possible optical design
 - Calibrated effect

Online vs Offline Data Processing

- Online processing for operational decisions
 - Pointing scans / Focus scans
 - Monitoring weather and instrument status
 - Real or near real-time processing
 - Integration with the telescope control system
 - Edge computing is necessary (Commissioning)
- Offline processing
 - High fidelity data reduction for science-grade products
 - Allow for parameters tuning depending on the science case
 - Coadding of multiple scans, iterative processing
 - Calibrated reproductible products

NIKA2 QL, Berta & Zylka 2025

Raw Data Rate & Volume

- MAMBO2 117 detectors : ~ 1 MiB / h
- SCUBA2 : 4 MiB/s, 12 hours → 100 GiB
- SPT-3G : 1.2 TiB /day (compression ~ /5) \rightarrow 14 MiB /s
- NIKA2 : ~18 MiB/s (+lossy compression /5)
- CONCERTO : ~116 MiB/s (+lossy compression /5)
- TolTEC : ~30 MiB/s or 2 TiB per observing night
- (LSST: 20 TiB / night = 480 MiB/s, SKA 700 PiB /yr = 23 GiB / s)

• Data Rate and Volume are/were manageable

- Data compression is sometime mandatory
- Disks at the telescope are sometime necessary

AtLAST L0 Date & Volume

- **2 to 12 GiB / s**: ~2 to 11 dedicated 10 Gbps optical fibers
 - 130 MiB / s if downsampled to 120 Hz

—

- **1000 h** \rightarrow 6 to 41 PiB : could we even keep the full raw data ?
 - 471 TiB if downsampled to 120 Hz

13

L2 Data Volume

- 1000 deg² @350μm
 - Pixel sizes of $0.5'' \times 0.5'' \rightarrow \sim 200$ GiB x 3 (data/weights/hits)
- ⁻ Repeat and project that scans many times $\rightarrow x$ a few thousand
- ⁻ And/or MonteCarlo Simulation \rightarrow x 100 to 1000
- > 1 PiB of storage...
- Distributed storage and distributed processing will be mandatory
- Need for huge temporary storage \rightarrow Storage policy
- Shared Common Infrastructure : AtLAST DataCenter !

Data Reduction Pipeline Architectures

- From distributing L0 to L2/L3 data ?
 - Avoid infrastructure duplication,
 - Open architecture,
 - Centralized knowledge base,
 - Cost & Energy efficient,
 - Q/A on distributed data products,
 - Reproductability,
 - Offline vs fully Online processing ? (prevent iterative processing)

Data Reduction Pipeline Architectures

- Based on past expertise
 - MAMBO2/SCUBA2/LABOCA/AzTEC/(SPT)/SPIRE/NIKA2/TolTec/ ...
 - Comparable processing / recipies, but not scalable to AtLAST
 - Need to handle instrument specific issues
- Towards a full observatory pipeline
 - Data reduction pipeline, with open contributions
 - Resilient to data or hardware failures
 - Up to the L3 data product (catalogs / P(k) / ...)?
 - Simulations are a key ingredient

L3 Data Products

- Any product based on maps :
 - Transfert functions
 - Insure proper usage of the observatory products

ps: • Point Source Catalogs

- Blind / Prior
- Galaxies / SF Core
- Extended Structure Detection
 - SF Filaments
 - SZ Clusters
- High order statistic (?)
 - Power spectra
 - n-pts correlation functions

18

Bing+23

Simulations

• Full instrument & pipeline transfert function

- MUST for most observations
- Realistic simulated sky
- Fast(er than observations)

Map/Catalog characterization

- Purity
- Completeness
- Flux bias

