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Obscured star formation rate

* Massive young short-life stars
produce a strong UV emission

« BUT, this emission is very
etficiently absorbed by dust
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“ Dusty systems: most of UV
photons are absorbed by dust and
re-emitted in the far IR
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T'he high-redshift dusty Universe

# Star formation rate density
history: amount of stars per Adapted from Madau+14
comoving volume as a Obscured

function redshift (left panel). Jot _+__++
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Early massive galaxies are dusty...

The mean dust-obscured
fraction increases steeply with
stellar mass.

Even at high redshift, the

most massive galaxies are
VERY dust obscured!

Sub-mm observations are thus
essential to understand early
star formation in massive
systems.
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... and gas rich!

“ Observations up to z~6:

increasing gas fraction

with increasing redshift.

* Large gas reservoirs
drives the high star
formation rates.

Gas fraction
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Observing high-z cold gas and dusty star formation with previous
and current facilities

Ground-based
(sub-)mm single-dish
telescopes

Sub-mm
interferometers

Space far-infrared
telescopes

+ Peak of the dust emission + Excellent sensitivity in

+ Dust emission in

up to z~5 . | i e s e both continuum and
+ Excellent mapping speed in Mapping speed in spectroscopy
photometry g + Tunable angular

- Limited spectroscopy at _ Limited sensitivity in resolution (antenna
high z configuration)

. spectroscopy _ :
- Low angular resolution [ : - Small field of view
- Low angular resolution

(confusion) - Miss large angular scales



Future large ground-based single-dish telescope: strength and weaknesses

N2CLS survey (IRAM 30m)

COSMOQOS 2.0mm
Strengths. 30| aSREREERRE ST

- mapping speed is excellent:
for instance N2CLS@IRAM30m 2o,
detects as many sources per
hour as ALMA for a blank 2mm
survey (Béthermin+ to be sub.).
- can cover very large areas to 00']
probe large-scale structures and
obtain statistic on rare massive —
systems. Bing+23
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* Weaknesses:
- potential resolution effects
especially for large beams (e.g.,
Béthermin+17, Bing+23)
- maximal sensitivity is limited

by confusion Galaxies

Blobs




Line fluxes

Two light cones are available: Observed SER-
- SIDES-Bolshoi (2 deg?, Béthermin+22)
- SIDES-Uchuu (118 deg?, Gkogkou+22)

luminosity relation

COSLED
Abundance matching templates

Galaxy properties
—> (passive/normal/
starburst, SFR)

Dark matter halo Galaxy catalog
catalog (Stellar masses)

Observed scaling relations:
- fraction of passive galaxies

- main-sequence and scatter ED templates

Béthermin+13, Béthermin+17, - ranciovoe - Continuum fluxes
Béthermin+22, Gkogkou+22 e L




Impact of confusion for various telescope diameters

850 microns

Simulation assuming a 25-m and no instrumental noise

From SIDES simulations (Bethermin+2017)



Impact of confusion for various telescope diameters

850 microns

Simulation assuming a 30-m and no instrumental noise

From SIDES simulations (Bethermin+2017)



Impact of confusion for various telescope diameters

850 microns

Simulation assuming a 40-m and no instrumental noise

From SIDES simulations (Bethermin+2017)



Impact of confusion for various telescope diameters

850 microns

Simulation assuming a 50-m and no instrumental noise

From SIDES simulations (Bethermin+2017)



SER limit versus telescope size (fora850 pm survey)

* Negative K-correction: similar 2om 3Um 40m S0m

SER limit for z=2-6.

1o confusion

wy /beam

+ Hrom 25m to 50m:;
confusion limit 5 times lower
=> diameter is essential to beat

. 50 SER limit
confusion

at z=2
+ >40m: able to detect the obscured (Mo/yr)
SER of the typical «M-star» high-z
galaxies

(a few tens of Mo/ yr)

50 SER limit
at z=6




Dusty galaxies and LSS

* Large baryonic mass
necessary to form a massive

galaxy:.

* Since structures grow with
time, massive halos are rare

at high z.

“ We expect massive dusty
galaxies to be formed in the
most overdense regions of the
Universe.

*_“ DM Density

.

Evolution
with time



Galaxy correlation function

Mean number density Correlation function

AP(r) i p°(1 +§(f))dV1de
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Probability to find two objects  Differential volume

separated by a vector r from each elements
other.
* The galaxy and matter correlation Correlation

function are linked through a scaling function
factor called the bias.

+ More massive halos are more clustered
(relation between bias and halo mass)

# The bias provides information on the
host halo mass of a galaxy population.

When null, the probability is linked

to the number density squared, i.e.
the Poisson case.
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Limitation of previous sub-mm surveys

/7
%

Confusion and resolution
effects biases the clustering
measurements from single-
dish instruments (e.g.,
Cowley+17)

Too tew objects from
interferometric surveys to
have enough statistics to
perform a measurement.

Discrepancy between measurements of
the correlation function with Herschel

10.000 ' Cooray et al. (S>30mdy} A 3
Maddox et al. (S>33mdy) O 3
1.000 E
s hA .
< 0100 N AAs, E
. [ A 4 ]
0.010 E
] ]
0.001 | =° | . [T 3
10.000 Cooray et al. (S>30mdy} A 3
Maddox et al. (S=36mdy) O
1.000 g
E'" 0.100
0.010
0.001 f . .
10.000 Cooray etal fS SUmJy] A
' ? Maddox et al. (S=45mJy) O
1.000 Ei’i gl
3 0.100 1
. - E "
0.010F . ’ '
0.001 fp 500«m




AtLAST perspectives

* Angular clustering from photometric surveys:

+ lots of statistics and easy to probe a large volume

+ selections can be reasonably simple (but potentially biased)

- signal can be diluted if the redshift distribution is very broad

- need to know very well the redshift distribution for the modeling

* 3D clustering through spectroscopic surveys through targeted
surveys with a sub-mm MOS:

or 3D spectrograph

+ direct measurement

+ stronger signal for the same amount of sources (no dilution)
- harder to build large samples

- line misidentification can be a big problem for interpretation



Spatial SFR distribution with line intensity mapping

Cosmlc infrared background

+ CIB (continuum of all galaxies) is
limited by redshift degeneracies

+ [CII]: dominant line in the far-IR and ‘;,"nﬁ} -:* '
correlated with SFR
(Schaerer+20)

: 'y '_0\"\\ *‘,‘! r ‘."t -

# [CII] in a narrow frequency slice => ‘ ;-'f*-f .3»'1 "_,-.f AT, PR
SER distribution at a given z '

* CONCERTO (2020-2023, PI: Lagache):
APEX experiment to map wide sub-
mm field using low-resolution
spectroscopy (R~300)

[CII] 25 in a 1GHz channel




Simulated intensity mapping cube slices
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| CI| power spectrum

Power spectrum: distribution of
the fluctuations at the various
scales

Large scale: amplitude linked to
the LSS, rather similar to
correlation function
measurements

Small scale: shot noise caused by

source below the detection
threshold

Wide spread between models =>
important constraints for galaxy
evolution models!

Large scale Small scale
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AtLAST extragalactic paper (Van Kampen+23)



What contributes to sub-mm intensity mapping signal?

Béthermin+22  largescales
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Synergy between clustering and LIM

+ Clustering of detected system and LIM are complementary, especially for 3D
surveys.

+ Bright sources can be studied in catalog space, while faint objects are studied
through LIM. Allow to extract a global information on all populations.

Detected sources Catalog
(bright or low-z) correla.tlon
function
Data cube
(RA, Dec, frequency)

Line intensity
— mapping
(power spectrum)

Undetected sources
(faint or high-z)




High-z polarized dust emission

Recently, ALMA detected the polarized dust emission of

two lensed dusty star-forming galaxies at high z.

This demonstrates that this signal can be detected, but it
opens complex questions on how to interpret it.
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| .essons from the local Universe

Dust polarization of M82

Polarized observations of
nearby galaxies (SOFIA /

SALSA) showed ordered
polarization at galactic scale.

Integrated emission is
polarized at the percent level.

Several mechanism contributes:

- ordered magnetic fields in the
disk

- outflows

- AGN
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Towards high-z polarization surveys with next-gen instruments

X/
L X4

At high-z, single-dish telescope can

only see the integrated polarization.

Deep surveys are feasible with
future far-IR telescope as PRIMA
(Béthermin+24) with thousands of
detections expected.

What about the sub-mm with
AtLAST? Easy to adapt SIDES for
AtLAST polarization when
instrumental forecasts are ready.

Expected redshift distribution in
polarization by PRIMA far-IR probe

Deep field with conservative estimated sensitivity
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Conclusion

* Alarge single-dish sub-mm telescope offers new possibilities
by beating the confusion and mitigating resolution effects.

* Clustering studies (photometric and spectroscopic
selections) will allow us to constrain the host halos of the
bright objects.

“ In complement, line intensity mapping will provide
information on fainter population.

« High-z polarization could be explored, but feasibility has to
be assessed.



