

Supernova remnants A science case for AtLAST ?

Antoine Gusdorf, LPENS, Paris, France

significant contribution from P. Dell'Ova, former PhD student

• Why study supernova remnants ?

• CO lines & Dust continuum

Feedbacks

Star formation

Perspectives: towards cosmic ray science

Why study supernova remnants ?

Supernova Remnants

- SN explosion types at Chandrasekhar mass stellar self gravitational attraction
 > electron degeneracy pressure
- Ia = thermonuclear white dwarf binary
- **II**, **Ib**, **Ic** = core-collapse massive star

• The 4 **VERY** theoretical stages of SNRs:

phase	Shock velocity (km/s)	Emission of photons	Acceleration of CRs
free expansion	104	yes	YES
Sedov-Taylor	$10^4 - \text{few } 10^2$	yes	YES
Pressure- driven	few 10 ² – few 10	YES	no
Momentum- conserving	< few 10	YES	no

Until the fade away time:
Feedbacks: shocks, photons, CRs production

Because they are there

- The Green catalog: Green et al. 2025:
- mostly from radio
- **310** Galactic SNRs (+21, -5 w.r.t. 2019)
- The SNRcat: Ferrand & Safi-Harb 2012:
- from X-ray and γ-ray
- 383 Galactic SNRs
- Low frequency Radio observations:
- MeerKAT: continuum without MIR
- +237 new Galactic SNR candidates

Because they are there

- Li et al. 1991: 1000 predicted (155 then observed)
- Ranasinghe & Leahy 2022
- 1 SN every 40 yrs, $\tau = 60$ kyrs \Rightarrow 1500 expected
- 3500 to 5600 Galactic SNRs
- Confusion and lack of sensitivity in radio
- Adams et al. 2013:
- 4.6^{+7.4}_{-2.7} Galactic SN/century
- (Galactic SFR $3.6^{+8.3}_{-3.0} M_{\odot}/yr$)
- Vigoureux et al., in prep. : ~10 000
- ~4 Galactic SN/century
- theoretical model, no interaction (yet)
- H₂ surface density variation with R_{gal}
- 4 arms

A science case for AtLAST ?

- Marginal for youngest, fastest SNRs:
- $n_{\rm H} = 1.0 \text{ cm}^{-3}$, $v_{\rm s} = 200 \text{ km/s}$
- 4 lines in AtLAST bands
- CI $E_{up} = 23.6 \& 62.5 \text{ K}, v = 492 \& 810 \text{ GHz}$
- OII $E_{up} = 38605 \text{ K}, v = 600 \text{ GHz}$
- SII $E_{up} = 21417 \text{ K}, v = 953 \text{ GHz}$?

- A safe bet: SNRs interacting with their environment:
- APEX program CO lines (+byproducts)
- Herschel WADI KP

A science case for AtLAST.

- Over long times (> 10 kyr) and large scales (> 10 pc), evolved SNRs:
- inject shock waves, photons, CRs in the ISM \rightarrow Can we quantify the energetic and chemical impacts of SNRs on the ISM?
- coexist with star formation episodes \rightarrow Can we characterize star formation in SNRs environment, if any?
- AtLAST sweet spot: FoV

IC 443, d = 1.9 kpc

VERITAS Preliminary significance map > 200 GeV

23°00'00

DEC. [J2000]

22°30'00'

CO lines & dust continuum velocities, densities, masses, temperatures, radiation fields

Measuring physical parameters from CO

Measuring physical parameters from CO

- Assumptions:
 - Excitation diagram approach (maps, isotopologues)
 - LVG approach

- Results:
 - dense structure identification
 - mass & density estimates
 - chemical & energetic impacts

region	$\overline{N_{\rm CO}}[10^{17} {\rm cm}^{-2}]$	Mass (M_{\odot})	$\overline{T_{kin}}[K]$
cloudlet (A)	$2.9^{+1.8}_{-1}$	180^{+190}_{-80}	10^{+1}_{-4}
ring-like structure (B)	$4.8^{+3.8}_{-1.9}$	160^{+190}_{-70}	12^{+2}_{-4}
shocked clump (C)	2.8^{+2}_{-1}	80_{-40}^{+90}	24^{+13}_{-11}
shocked knot (D)	$1.6^{+2.2}_{-1.1}$	15^{+30}_{-10}	16^{+7}_{-9}
ambient cloud	$0.8^{+1}_{-0.6}$	300^{+600}_{-200}	9^{+2}_{-4}
IC443G (extended)	$1.4^{+1.1}_{-0.6}$	700^{+900}_{-300}	10^{+2}_{-1}

Dell'Ova et al. 2020

Measuring physical parameters from the dust

12

Measuring physical parameters from the dust

13

Synergies

- Lines, on much smaller fields:
 - H₂ from *Spitzer* and JWST (e.g., Dell'Ova et al. 2024)

Declination [J2000]

- CO from *Herschel*, ALMA, NOEMA
- Dust emission (SEDs building):
 - All other IR telescopes
- Low frequency Radio observations:
 - SKA pathfinders and precursors
 - contributions to SEDs:
- synchrotron (polarized)
- free-free (unpolarized)

- AtLAST's unprecedented, adequate specifications:
 - Field of View & Angular resolution
 - Spectral coverage (CO J_{up} = 1, 2, 3, 4, 6, 7, 8 + cold dust)

Feedbacks Shocks, photons, cosmic rays

AtLAST-fr-days

Shocks: SiO lines (and shock models)

- Cosentino et al. 2022:
 - 12m ARO maps
 - 28 SiO (1-0) & (2-1)

Unpublished I30m/APEX data:

- Spectral survey, 2 positions
- ~15 hours/line
- ²⁸SiO, ²⁹SiO, ³⁰SiO

(2-1) to (11-10), I30m & APEX

Necessary synergies:

- Complement with Si/SiII Si ${}^{3}P_{1}-{}^{3}P_{0} \& {}^{3}P_{2}-{}^{3}P_{1} (129.7 \& 68.5 \ \mu\text{m}), Herschel-PACS Si^{+} {}^{2}P_{3/2}-{}^{2}P_{1/2} (34.82 \ \mu\text{m}), Spitzer-IRS$
 - CO & H₂, Chemical surveys (IC443: van Dishoeck et al. 1993 & W28: Mazumdar et al. 2022)
 - ALMA/NOEMA

Photons: CI, C₂H (and PDR or irradiated shock models), RRLs

- Disentangle shocks from PDR-like effects
 - CI (Joblin et al. 2018)
- \circ ${}^{3}P_{1} {}^{3}P_{0}$, $E_{up} = 23.6$ K, v = 492 GHz
- \circ ³P₂ ³P₁, E_{up} = 62.5 K, v = 810 GHz
 - specific diagnostics: C₂H & C chains
- Teyssier et al. 2004 PDRs,
- Beuther et al. 2008 massive SFRs
 - Radio Recombination Lines (RRLs):
- H, C+He+S
- o Orion Bar: Cuadrado et al. 2019, Goicoechea et al. 2021, Pabst et al. 2024)

- Important synergies (Joblin et al. 2018):
 - CO & H₂, and chemical surveys
 - dust continuum
 - OI and C⁺ observations (*Herschel*)

17

Cosmic rays: cosmic ray ionization rate measurements

- ζ measurements, Vaupré et al. 2014:
 - in W28 ambient clouds
 - chemical modelling of
- H¹³CO+ (1-0), DCO+ (2-1)
- ¹³CO, C¹⁷O, C¹⁸O (1-0) & (2-1)
- Results:
 - relatively high values
 - above 10⁻¹⁷ s⁻¹

Star formation

IR point source detections in IC443G-extended

What needs to be done : local CMF studies

- ALMA-IMF LP (PI F. Motte et al.; Motte et al. 2022, Ginsburg et al. 2022):
- 1 mm & 3 mm continuum : core extraction, CMF building Motte et al. 2018, Pouteau et al. 2022, 2023, Armante et al., 2024, Louvet et al. 2024
- CO & SiO lines : outflow detection Nony et al. 2020, 2023, Armante et al. 2024,

Towner et al. 2024, Valeille-Manet et al. 2024

18^h47^m46.5

46.s

R.A. [J2000]

One last ISM puzzle: synchrotron bubbles or compact HII regions ?

22

Perspective: towards Cosmic Rays science

A summary

- Based on the CO lines and dust emission, we can:
 - identify dense medium components
 - estimate their mass, density
 - measure the IR-to-mm local radiation field
 - characterize some aspects of the UV field (starlight, PAH+/PAH)
 - characterize some dust properties
- Based on observations of selected species, we can:
 - quantify the contribution of shocks and photons to the energy injection
 - measure local cosmic ray ionization rates
- Based on our star formation studies, we can:
 - identify potential pre- and proto-stellar cores, build their CMF
 - start to investigate the potential outflows
 - identify radio bubbles (synchrotron bubbles or compact HII regions)
- All this on huge regions of the sky at high angular & spectral resolutions

A selective summary

- Based on the CO lines and dust emission, we can:
 - identify dense medium components
 - estimate their mass, density
 - measure the IR-to-mm local radiation field
 - characterize some aspects of the UV field

- Based on our star formation studies, we can:
 - start to investigate the potential outflows
 - identify radio bubbles

• The huge FoV means we can participate to the interpretation of the white contours: γ -ray emission, typically obtained at ~0.2° resolution (upcoming CTA a few arcmin)

Cosmic rays characterization in evolved SNRs

Thanks for your attention !