Andreas Lundgren, LAM, Marseille

12 May 2025, Amphithéâtre Pierre-Gilles de Gennes, Paris

AtLAST has received funding from the European **Union's Horizon Europe and Horizon2020 research and** innovation programmes under grant agreements No. 101188037 and No. 951815.

Why AtLAST?

Single dish telescopes

Relatively low resolution Small collecting area Small FoV

The next step: A a filled aperture telescope that provides high resolution, with and a large field of view

<u>Interferometers</u>

Very high resolution Tiny FoV Insensitive to extended emission

Future for detectors Moores law

Compilation of submm detector counts vs year using a variety of technologies. Extrapolation suggest megapixel camera will be operative by 2032

Antenna Characteristics

A&A, 694, A142 (2023

The conceptual design of the 50-meter Atacama Large Aperture Submillimeter Telescope (AtLAST)

Tony Mroczkowski^{1,*}^(a), Patricio A. Gallardo²^(b), Martin Timpe³^(b), Aleksej Kiselev³^(c), Manuel Groh³, Hans Kaercher⁴^(c), Matthias Reichert³, Claudia Cicone⁵^(c), Roberto Puddu⁶, Pierre Dubois-dit-Bonclaude³, Daniel Bok³, Erik Dahl³, Mike Macintosh⁷, Simon Dicker⁸^(c), Isabelle Viole⁹^(c), Sabrina Sartori⁹^(c), Guillermo Andrés Valenzuela Venegas⁹^(c), Marianne Zeyringer⁹, Michael Niemack^{10,11}^(c), Sergio Poppi¹², Rodrigo Olguin¹³, Evanthia Hatziminaoglou^{1,14,15}^(c), Carlos De Breuck¹^(c), Pamela Klaassen⁷^(c), Francisco Miguel Montenegro-Montes^{1,16}^(c), and Thomas Zimmerer³

(5)	Parameter	Value
	Wavelength (λ) range	0.3-10 mm
	Primary mirror diameter	50 m
	Field of view (FoV)	2° (1°) ^(†)
	Number of instruments	≥5
	Effective focal length	≈100 m
	Number of mirrors	≤ 4
	Number of segments	≈400
	Sizes of segments	≈5 m ²
	Total collecting area	≈2000 m ²
	Optical surface accuracy	20–30 µm
	Surface coating	similar to ALMA
	Optical design	Cassegrain-Nasmyth
	Description of active optics	active surface + metrolo
	Actuator precision	≈10 µm
	Mechanical pointing accuracy (*)	25
	Scan speed	$3^{\circ}s^{-1}$
	Acceleration	$1^{\circ}s^{-2}$
	Elevation (EL) range	20°-90°
	Azimuthal (AZ) range	±270°
	Mount type	AZ-EL
	Support structure material	Steel and invar

ı ogy

AtLAST Field-of-view

Blue: 120" FoV Red 60" FoV

Transmission at Chajnantor Millimeter and submillimeter

Submillimeter single dish telescopes

- 1. Larger than 10 m
- 2. Capable of observing at submillimeter wavelengths (site, instruments and surface)
- 3. In operation, or in relocation
 - 10 antennas worldwide (please let me know if I missed any)
 - 5 antennas in the northern hemisphere, 3 in the southern, and 2 being relocated (to and within the southern hemisphere)
- All of these antennas has contributed greatly to the submillimeter science.

.

Three frequency ranges

SEST (AMT) Swedish-ESO Submillimetre Telescope (Africa Millimetre Telescope)

15 m, 78 - 268 (363) GHz

2350 m, La Silla, Chile

1987 - 2003, Sweden and ESO (and Finland)

In 2026 it will be relocated to The Gamsberg Mountain, in Namibia

First mm-telescope in Africa, and 20% of the time will be devoted to EHT observations

APEX **Atacama Pathfinder Experiment**

12 m, 67 - 950 (1100, 1500) GHz

5050 m, Chajnantor, Chile

2004 - 2022: MPIfR, ESO, Sweden 2023- present: MPIfR

Essential for AtLAST: Staff with knowhow and a platform for instrument testing.

IRAM 30m telescope

- 30 m, 100 375 GHz
- 2850 m, Granada, Spain
- 1984 present: IRAM

Also a possible platform for testing AtLAST instrumentation

LMT Large Millimeter Telescope

50 m, 75 - 280 (350) GHz 4850 m, Sierra Negra, Mexico 2011 - present: INAOE and Amherst

SPT South Pole Telescope

10 m, 90 - 220 (345) GHz, offset Gregorian design

2900 m, South Pole

2007 - present: NSF

JCMT James Clerk Maxwell Telescope

15 m, 86 - 680 GHz

4092 m, Mauna Kea, Hawaii

1987 - 2015: UK, Canada, Netherlands 2015 - present: East Asian Observatory

SMT (formerly HHT) UArizona ARO Submillimeter Telescope

10 m, 205 - 370 GHz 3170 m, Arizona, USA 1993 - 2004: MPIfR and ARO 2004 - present: ARO

GLT Greenland Telescope

84 - 377 GHz

76 m, Pituffik Space Base, Greenland. Plans to move to Summit Station (3210 m)

2017 - present: ASIAA, CFA, NRAO, and Haystack

CSO (LCT) Caltech Submillimeter Observatory (Leighton Chajnantor Telescope)

10.4 m, 177 - 920 GHz

4140 m, Mauna Kea, Hawaii dismantled July 2024, to be relocated to the CCAT site, Chajnantor, Chile (5600 m), operations start 2027

1987 - 2015 (Caltech)

ASTE **Atacama Submillimeter Telescope Experiment**

10 m, 240 - 460 (950) GHz

Throughput - AΩ

Throughput = Antenna area (m^2) x Field-of-view area (deg^2)

- For APEX:
 - 12 meter and 18 arcminutes:
 - Throughput $(A\Omega) = 8 \text{ m}^2 \text{deg}^2$
 - Beams at 1 mm: 2700
- For APEX Nasmyth Cabin:
 - 12 meter and 35 arcseconds
 - Throughput $(A\Omega) = 0.01 \text{ m}^2\text{deg}^2$
 - Beams at 1 mm: 3

Antennas @ 1mm (300 GHz) Comparison to capable single dish antennas

	LMT	IRAM 30m	APEX (+6)	SPT	AtLAST
Frq range (GHz)	75 - 350	100 - 375	150 - 950	75 - 300	30 - 1000
WI range (mm)	4 - 0.85	3 - 0.8	2 - 0.2	4 - 1	10 - 0.3
Diameter (m)	50	30	12	10	50
FoV (arcmin)	1.5	7	18	110	120
Surf acc (mu)	70	65	15	25	25
HPBW (")	5.0	8.3	20.6	24.8	5.0
AΩ (m^2 deg^2)	1	8	8	210	6100
Beams at 1mm	330	2600	2700	71 000	2 100 000

Antennas @ ALMA B9 (0.44 mm, 681 GHz) Comparison to capable single dish antennas

	ASTE	LCT	JCMT	APEX	AtLAST
Instruments	ASTE camera	?	SCUBA2	SEPIA, CHAMP, ARTEMIS	AtLASTCAM?
Diameter (m)	10	10.5	15	12	50
FoV (arcmin)	7.5	8	12	18	60
HPBW (")	10.9	10.4	7.3	9.1	2.2
AΩ (m^2 deg^2)	1.0	1.2	5.6	8	1542
Beams at 0.44 mm	1700	2140	9800	14 200	2 730 000

Antennas @ ALMA B10 (0.35 mm, 857 GHz) Comparison to capable single dish antennas

	LCT	APEX	AtLAST
Instruments	?	CHAMP, ARTEMIS, A-MKID	AtLASTCAM
Diameter (m)	10.5	12	50
FoV (arcmin)	8	18	60
HPBW (")	8.3	7.2	1.7
AΩ (m^2 deg^2)	1.2	8	1542
Beams at 0.35 mm	3400	22 400	4 300 000

AtLAST for ALMA

A study focused on impact on ISM studies

AtLAST will be crucial for future ISM studies, both as stand-alone and in combination with ALMA

All derived physical properties (column densities, masses and FWHMs) of resolved ISM structures are strongly biased in interferometric alone observations even below the MRS.

The true sky emission is only recovered after data combination including short-spacing information

The combination of ALMA data with larger SD (such as AtLAST) produces significantly better results (<10% error) than with current 7m + TP data.

Bonanomi et al., accepted, arXiv 2405.09290

AtLAST for EHT and **GMVA**

A key design aspect of the EHT array is the use of small and large aperture telescopes to form a dense interferometric network. The large-aperture telescopes will work as sensitive anchor stations.

A large and filled aperture telescope at Chajnantor, with its excellent observing conditions, will play a vital role as a high-sensitivity key anchor station will potentially have better time and frequency agility than phased ALMA.

AtLAST will have a system-equivalent flux density (SEFD) that is going to 30% of ALMA, slightly better than NOEMA, and orders-of-magnitude better than other most other EHT stations (e.g. APEX)

AtLAST thus has strong potential to be a key element for next generation millimeter/submillimeter VLBI arrays and allow them to achieve a range of new science goals requiring highly sensitive, multi-frequency, time-agile observations.

> Akiyama et al. Millimeter/Submillimeter VLBI with a Next Generation Large Radio Telescope in the Atacama Desert. Galaxies (2022)

Summary AtLAST will provide

A large mm and submm single dish facility in the southern hemisphere

With orders-of-magnitude more receivers, an unprecedented mapping speed

development

Improve data quality of other projects, such as ALMA and EHT

- Unprecedented angular resolution data with a filled aperture at frequencies > 400 GHz
- A platform a tremendous throughput, which will stimulate mm and submm receiver