

Heterodyne Data Processing

Jérôme Pety, Sébastien Bardeau, Emmanuel Reynier, Albrecht Sievers, Jean Tedros, Antonio Vazquéz, Kateryna Fal, Mathieu Houdeau

May 12th-14th 2025 - Paris

ALHAMBRA multi-beam project

Two bands

- 5×5 beams at 3 mm.
- 7×7 beams at 1 mm.

Derotation foreseen.

Mixer characteristics

- 2 polars x 2 sidebands x 8 GHz.
- Frequency range: 72 116.5 GHz and 200 276 GHz.
- Receiver temperatures: Better than 50 K at 3 mm and 83 K at 1 mm.
- At least 13 dB rejection.

Spectrometer characteristics

- Full IF band at 64 kHz \Rightarrow 13 and 25 Mchannels at 3 mm and 1 mm.
- Dump rate: 10 Hz.

Timescale First light for at least one band in 2029.

Galactic spectra are full of faint lines!

Percentage of channels above 1000 mK 0.03% 0100 mK 0.14% 0010 mK 0.68% 0001 mK 3.4% ⇒ More complicated baselining!

Data RateS

Sustainable peak data rate 700 MiB/s for A090 and 1400 MiB/S for A230 (including reduced data products).

Sustainable average data rate 4.5 PiB/yr for either A090 or A230 (including reduced data products).

No free lunch \Rightarrow costs

Hardware investment $\simeq 1.5$ Meuros for two copies for 5 years of operation. Running costs Non-negligible running costs.

Heterodyne Spectroscopy Data Processing

No free lunch \Rightarrow costs

Hardware investment $\simeq 1.5$ Meuros for two copies for 5 years of operation. Running costs Non-negligible running costs.

Heterodyne Spectroscopy Data Processing

Goals

End-to-end pipeline(s)

- Position-Position-Frequency cubes for the full bandwidth.
- Or at least around a few key lines.

Delivered products through DMS

- Diagnostic plots and reports.
- Raw data (IMBFITS or 30m files).
- Signal and noise PPV cubes. Mask of detected signal and associated moment maps.
- VO-compatible FAIR system.

Simplifying observation setups for simple and complicated projects.

Processing steps

- Set of pipelines Automatically triggered when new data appear to avoid human intervention.
- Minimum of hardcoded heuristics The data format have to be as much self-descriptive as possible.
- Automatic diagnostic plots to observers and PIs Web pages and/or DMS.

Automatic filling of the calibration database Pointing. Focus. Receiver and system temperatures.

Automatic reports to IRAM staff once a day

Observation Management System

https://oms.iram.fr

Heterodyne Spectroscopy Data Processing

Interactive pre-visualization ⇒ YAFITS from Obs. de Paris (N.Moreau & P.Salomé)

Linear CPU scaling as a function of the number of pixels

Processing one 13-min.-OTF scan on a 2010 PC (profiling made in 2017).

Calibration algorithms are READ/WRITE limited.

Observing strategy: I. PSW vs FSW baselines

Heterodyne Spectroscopy Data Processing

Observing strategy II. Finding the best reference positions

Not too far for best baselines.

The most devoid of signal to avoid contaminating the result.

 \Rightarrow Dedicated observations of the reference position to check and correct if needed.

Observing strategy: III. Scanning

Peak [K]

Wide Bandwidth (Marka et al. 2017) ⇒ Many parameters depend on frequency

MIRA Calibration per baseband (1.35 GHz)

MRTCAL Tunable calibration bandwidth (default: 20 MHz) \Rightarrow Better traces change of atmospheric absorption close to water line at 183.3 GHz.

Heterodyne Spectroscopy Data Processing

J.Pety et al. 2025

Wide Bandwidth (Marka et al. 2017) ⇒ Many parameters depend on frequency

MIRA solution One atmospheric calibration per 1.35 GHz, no interpolation.

Heterodyne Spectroscopy Data Processing

Wide Bandwidth ⇒ Many parameters depend on frequency

MRTCAL solution One atmospheric calibration per 20 MHz, linear + linear interpolation.

Heterodyne Spectroscopy Data Processing

Wide Bandwidth (Einig et al. 2023) ⇒ Many parameters depend on frequency

Wide Field > Many parameters depend on sky position

Noise level From weather variations and scanning strategy.

Wide Field (Einig et al. 2023) \Rightarrow Many parameters depend on sky position

A more subtle effect The noise is correlated along the scanning direction due to the switching strategy because the same reference position (OFF) is shared among many ON dumps.

Heterodyne Spectroscopy Data Processing

On the importance of the homogeneity of pixels

J.Pety et al. 2025

Data filtering: Use the empirical RMS noise

Heterodyne Spectroscopy Data Processing

Data filtering: Weather conditions matter, even at 3 mm

Heterodyne Spectroscopy Data Processing

RFI from cellular phones, internet switches, car radars, etc

Heterodyne Spectroscopy Data Processing

RFI from cellular phones, internet switches, car radars, etc

Time drift \Rightarrow transient random pulses

Average spectrum \Rightarrow invisible

Heterodyne Spectroscopy Data Processing

Take-home messages

Hardware limitations Astronomers have to leave with them.

- ⇒ Many thanks to hardware engineers to keep improving the frontend/backends!
- \Rightarrow Observe at wavelengths where the telescope is good to excellent!
- **Datarates** Think about the minimum datarate required by a science goal, not the maximum datarate that the instrument can deliver (our children will thank us!).
- Atmospheric contribution Think about nearby signal-"free" reference positions (all the more difficult than the sensibility increases)!

Flat fielding is as important as having a good reference position.

It is worth!

Heterodyne Spectroscopy Data Processing