Heterodyne Receivers for AtLAST

Martina Wiedner (LIRA, Observatoire de Paris)

for Heterodyne Instrumentation Community

Heterodyne Receiver Specifications For AtLast (by AtLAST team)

- 1) Heterodyne receiver focal plane arrays
 - ~ 1000 feeds and
 - spectral resolution R^{10^6} or 10^7 (< 1 km/s).
 - Bands likely 70-116 GHz, 200-400, GHz, 580-720 GHz, and 850-950 GHz
 - with IF \geq 32 GHz instantaneous bandwidth.
- 2) Single beam, multi-band receivers for mmVLBI and EHT campaigns

Heterodyne Receiver Specifications For AtLast (by AtLAST team)

- 1) Heterodyne receiver focal plane arrays
 - \sim 1000 feeds and
 - spectral resolution R^{10^6} or 10^7 (< 1 km/s).
 - Bands likely 70-116 GHz, 200-400, GHz, 580-720 GHz, and 850-950 GHz
 - with IF \geq 32 GHz instantaneous bandwidth.
- 2) Single beam, multi-band receivers for mmVLBI and EHT campaigns

ALMA bands and atmospheric transmission

Instantaneous Receiver Bandwidth; 32 GHz

Correlated	2x upgrade			4x upgrade (goal)	
Bandwidth	Receivers	Under developm	ent / construction		
Band 2					
Band 6				Goa	al
Band 8				Goa	al
	Current r	eceivers (2SB un	less noted)		
Band 1					
Band 3					
Band 4					
Band 5					
Band 6					
Band 7					
Band 8					
Band 9	DSB				
Band 10	DSB				
(0	8	16	24	32
A	vailable ba	ndwidth per pol	arization summed a	cross sidebands (Gl	Hz)

ALMA Wideband Sensitivity Upgrade

Rich Heritage of Heterodyne Receivers and Array Receivers

UpGREAT, 7 x 2 pixel

SuperCam 8 x 8 pixels, far-IR X 8000, Uni. of Arizona, USA

GUSTO, 8 pixel

Previous Heterodyne Array Rx

CHAI; CCAT/FYST

Heterodyne detection chain

• Efficient :
$$t_{int} \sim 1/N$$
, $t_{int} \sim T_{rx}^2$

upGREAT, SOFIA – 2 x 7 pixels

- 1830 2070GHz (/2500GHz)
- SOFIA

Risacher et al.

- Efficient ($t_{int} \sim 1/N$, $t_{int} \sim T_{rx}^2$)
- Cost 25kEuro/pixel (Graf) + time!

• Efficient ($t_{int} \sim 1/N$, $t_{int} \sim T_{rx}^2$)

• Cost

• Simplified structures for fabrication

Some ideas to simplify

Horns: corrugated --->

- smoothed walled
- pyramidal, pyramidal with smooth walls
- pressed
- Silicon horns
- flat lenses

IPI 1 0kV 44 1mm x220 SE/UI

Gao et al. Defrance et al Sauleau et al.

Delorme, Valentin

Gibson et al.

Some ideas to simplify

LO beam divider:

- in waveguide
- phase gratings
- or integrated LO

The upGREAT Dual Frequency Heterodyne Arrays for SOFIA

Fig. 11. Collimating Fourier grating operating at 4.7 THz: calculated diffraction pattern (left), photograph of the final grating (center) and surface structure (right). We show two unit cells of the grating surface to illustrate its hexagonal symmetry.

upGREAT team

JPL, The 500–600-GHz spectrometer front end, with a close-up of the heart of the instrument showing all the silicon micromachined waveguide structures.

Some ideas to simplify

Horns: corrugated --->

- smoothed walled
- pyramidal, pyramidal with smooth walls
- pressed
- Silicon
- flat lenses

LO beam divider:

- in waveguide
- phase gratings

Mixers:

- Compact mixer bias, shared B
- Multimixer array on single waver
 Rx on chip
- IF Cabling:
- Multiline
- Superconducting
- Microstrip or Stripline

E.g. See Radioblocks

SuperCam, HHT - 64 pixels

- 320 360
 GHz on HHT
- Monolithic block with horns

Horn Extension Block Electromagnets LNA Modules SIS mixer IF board Magnet DC Gilbert GPPO blind mate IF connectors **Bias DC connector** connector

Groppi, Walker et al. U of <u>Ariz</u>ona

Chai, CCAT - 64 pixels

490, 810 GHz

Graf; Honingh U zu Köln

Chai, CCAT - 64 pixels

490, 810 GHz

Graf; Honingh U zu Köln

IRAM – Alhambra, 49 pixels; 230 GHz

Fontana, Maier et al.; IRAM

CHAMP+, APEX – 2x7 pixels; 690, 810 GHz

Güsten et al.

Heterodyne array in Nobeyama/NAOJ

7BEE (72-116 GHz) 7-beam dual-polarization 2SB receiver with HEMT (Yamasaki+2024)

Installed on 45m, commissioning underway.

Huge IF chains!

FOREST (80-116 GHz)

4-beam dual-polarization 2SB receiver with SIS

(Minamidani+2016; Nakajima+2019)

~10 yr operations, gave a lot of results in the Galactic Plane survey "FUGIN"

Integrated circuit (125-160 GHz)

On-chip mixer for future multi-beam receivers under development at NAOJ Advanced Tech. Center (Shan+2018, 2019)

For future large-format heterodyne array, on-chip integrated circuit of SIS mixer is being studied and demonstrated for 2mm band.

Slide given by Tamura-san

- Efficient ($t_{int} \sim 1/N$, $t_{int} \sim T_{rx}^2$)
- Cost
- Simplified structures for fabrication
- Multiplexing
 - In time like CCD,
 - In frequency like MKIDS
 - --> Not possible

JWST/MIRI 1024 × 1024 pixel Si:As detector array – mid-IR (10⁶ spexels)

• Efficient (t_{int} ~ 1/N, t_{int} ~ T_{rx}²)

• Cost

- Simplified structures for fabrication
- Multiplexing
- Dense packaging $\text{2F}\lambda$ ok

Optics by Baryshev

- Efficient (t $_{int} \sim 1/N$, t $_{int} \sim T_{rx}^{ 2}$)
- Cost
- Simplified structures for fabrication
- Dense packaging
- low energy consumption,
- low heat dissipation at cryogenic T
- small vol
- Low weight
- Reliability

Get inspirqtion from space missions, e.g. Origins, FIRSST

Limit required resources

- low energy consumption:
 - Critical elements:
 - Local oscillator; 2W/pixel with AMC
 - Spectrometers: 7W/4GHz backend

Limit required resources

- low heat dissipation at cryogenic temperatures:
 - Critical elements:
 - Low Noise Amplifiers, 1 to 2 mW

InP Amplifiers, Gallego

Options:

- InP
- SiGe
- Parametric

SIGe Amplifiers, Bardin

Parametric Amplifiers

Limit required resources

- Low volume & mass
 - IF chains \rightarrow miniaturize
 - Few, wide RF frequency bands

R. Plume U of Calgary

Max-Planck-Institut für Radioastronomie

Technical specifications qFFTS board:

- Input bandwidth: 4 x 4 GHz
 (0 4 GHz and 4 8 GHz)
- ✤ Spectral channels: 4 x 64k
- → Spectral resolution: 71 kHz (ENBW)
- → ADC resolution: 12-bit (TI ADC12DJ5200)
- Power consumption: max. 140 W (~9 W / GHz)
- → Interface: Gigabit Ethernet

Technical specifications qFFTS crate:

- → Total bandwidth: 128 GHz
- Spectral channels: 2 million channels
- Max. dump rate: 20 spectra / second

Our latest generation of FFT spectrometer

qFFTS spectrometer board and qFFTS spectrometer 19" crate

Max-Planck-Institut für Radioastronomie

Spectrometer on a Chip (ASIC)

PMCC

P19800B

ASIC Operational Capabilities

The ASIC digitizes the RF signal and splits the spectrum into 8192 frequency bins. The power or magnitude is computed for each bin and the result accumulated.

- Input signal bandwidth up to 5.5GHz
- Sampling rate up to 8GS/s
- Input signal FSR programmable from 66mV to 400mV pp differential
- Digitizer ENOB > 4.5-bit to 4GHz
- Power consumption < 1.6W (full functionality)
- Power consumption < 1.2W (4MHz bin resolution)
- Up to 8192 Frequency bins within 0 to 4GHz
- Accumulation time programmable from 2us to 34s
- An integrated 16GHz PLL with selectable Fref
- An SPI interface for control, diagnostics and readout
- Temperature range -40°C to 110°C
- 15 x 15 BGA package (12.8mm x 12.8 mm)
- Fabrication technology 28nm CMOS

Bernd Klein, FIR2025 / Leiden / 3. April 2025

HERO/Origins

Improve on:

- D Dissipation
- P Power
- S Simplification
- V volume
- M mass
 - R reliability

Wiedner et al.

- Efficient (t_{int} ~ 1/N, t_{int} ~ T_rx²)

• Cost

- Simplified structures for fabrication
- Dense packaging
- low energy consumption,
- low heat dissipation at cryogenic temperatures
- small vol and
- Low weight
- Reliability
- Uniformity
- Research Groups

Other aspects not discussed

as they apply equally to single pixel heterodyne receivers

- (line) polarimetry
- IF bandwidth, e.g. ALMA upgrades, SMA wideband upgrade
- Receiver sensitivity, e.g. ALMA, NOEMA, APEX
- Calibration (accuracy)
- Multifrequency: dyplexed
- Observing modes, e.g. for mapping

Conclusion

100 pixels: today
 1000 pixels: cooling, power, size, mass starting to become acceptable largest challenges: time, cost (>25 M€)
 FoV 0.03 deg; power >125 kW
 >1000 pixels: need breakthrough or lots of resources
 Technological developments for larger arrays are ongoing

